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Reversing symmetries in dynamical systems 

J S W Lamb 
Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE 
Amsterdam, T h e  Netherlands 
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Abstract. Dynamical systems may possess, in addition to symmetries that leave the 
equations of motion invariant, reversing symmetries that invert the equations of motion. 
Such dynamical systems are called (weakly) reversible. Some consequences of the existence 
of reversing symmetries for dynamical systems with discrete time (mappings) are discussed. 
A reversing symmetry group is introduced and it is shown that every (weakly) reversible 
mapping L can he decomposed into two mappings & and K, of the Same order 2' (limit 
I-m included) such that K f o  K : =  I. Same applications are discussed briefly. 

1. Introduction 

Symmetries play an important role in physics. In a lot of applications they provide a 
simplification of calculations or even determine a true classification of phenomena. In 
dynamical systems one may distinguish, in addition to symmetries that leave the 

A well known family of dynamical systems with a reversing symmetry are evolutions 
equations of motion invariant, reve?sing symmetries th2t icvc!? !he eqL!ztiocs of motion. 

in phase space that are governed by a Hamiltonian of the form 

These systems are said to be time reversal invariant, for the equations of motion are 
left invariant under time reversal t + - t  and the transformation p. + -pa. This transfor- 
mation is an involution (i.e. its own inverse). 

Devaney [l] generalized this, allowing as the reversing transformation any involu- 
tion. These dynamical systems are called reversible. If the reversing symmetry is not 
required to be an involution the dynamical system is called weakly reversible [2]. 

Much attention has been paid to reversible dynamical systems [3]. It has been 

as mM-ton and strange attractors at the same time [2, 4.51. However, weakly reversible 
systems have not been studied so well until now. 

The concept of reversing symmetries addresses to weakly reversible dynamical 
systems. Regarding them, the idea of a symmetry group can be extended to a reversing 
symmetry group that contains in addition to symmetries also reversing symmetries, In 
this paper I will focus on the importance of this for dynamical systems with discrete 
time. The latter can be regarded as stroboscopic pictures or as Poincari sections of 
dynamical systems with continuous time. 

In section 2 the concept of reversing symmetries is introduced for both dynamical 
systems with continuous and discrete time. In section 3 reversing symmetry groups are 
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shown !ha! !hey may show a comfiina!ion of conserva!ive and dissipa!ive fea!??rcs 
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considered and in section 4 some applications are discussed. Extended details have 
been put in the appendices. 

d 
- x = F x  
dr 

that 

d 
- (Mx) = F 0 MX 
df 

and for the dynamical system with discrete time 

x ' = L x  

that 

Mx'= L a  Mx 
e M 0 L = L 0 M. 

(3) 

(4) 

We will define S to be a reversing symmetry of a dynamical system such that, in 
the continuous case (2) 

(6) 
d 
- (SX) = - F .  sx 
dr 

and in the discrete case (4) 

SX' = L-l 0 sx 

 SO L =  L - I  0 S. (7) 

Detinition (7) coincides with the definition of weak reversibiiity given by Sevryuk [ij. 
Hence dynamical systems with a reversing symmetry are called weakly reversible. 

If S is an involution, i.e. S = S- ' ,  we may write (7) as 
s Q L 0 s = L-'. (8) 

Mappings L with this property, i.e. that have an involution as a reversing symmetry, 
are called reversible (after Devaney [ 11). 

In the continuous case the same terminology is used. Thus a dynamical system (2) 
with a reversing symmetry S is called weakly reversible in general, and reversible if 
the.reversing symmetry S is an involution. 

If a dynamical system has certain (reversing) symmetries one may construct from 
them other (reversing) symmetries by composition: 
[i) The composition of two symmetries is a symmetry. 
(ii) The composition of two reversing symmetries is a symmetry. 
(iii) The composition of a symmetry and a reversing symmetry is a reversing symmetry. 

These properties follow directly from the definitions and hold both in the discrete 
and continuous case. 
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3. Revening symmetry groups 

The symmetries of a dynamical system, together with its reversing symmetries, form a 
group, if one requires the inverses of the (reversing) symmetries to exist.t 

I will now proceed to reveal the structure of a reversing symmetry group by proving 
a number of propositions. As direct consequences of these propositions, two theorems 
are formulated in which statements are made about the structure of reversing symmetry 
groups and a related special decomposition property of mappings that have a reversing 
symmetry. 

Proposition 1. If M is a symmetry then M-' is a symmetry and if S is a reversing 
symmetry then S-' is a reversing symmetry. 

Proof: In the discrete case it follows directly from (5) and (7) that if M is a symmetry 
and S is a reversing symmetry that 

M-' L= L. ~ - 1  

and 

s-' L =  L-' S-' 

i.e. M-' is a symmetry and S-' is a reversing symmetry. 
In the continuous case we may write (6) as 

dSI, 0 Fx= - F o  Sx 

where dS(, is the linearized form of S in x. Furthermore we may write (2) as 

d - (S-' 0 Sx) = F 0 S-lo Sx 
d t  

e d S - ' / *  0 dSI, 0 Fx= F a  S-lo Sx 

(using (9) and writing x'= Sx) 

e -dS-'[,. o Fx' = F D S-lx' 

and hence S-l is a reversing symmetry. It can easily be shown, by a similar argument 
U 

Dejnition 1. If a dynamical system has a reversing symmetry, its reversing symmetry 
group is defined to he the group containing its symmetries and reversing symmetries. 

The reversing symmetry group is constructed as follows: 
(i) The unity operator I is a symmetry and the unity element of the group. 
(ii) The group operation is the composition. The composition operation is associative 

and the reversing symmetry group is closed under the composition and hence it 
is a proper group operation. 

(iii) Because of proposition 1, the inverses of all group elements are contained in the 

that M-' is a symmetry if M is. 

group. 

t If one does not require the inverses to exist, they form a semigroup, 
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In practice it is hard, if not impossible, to recognize all symmetries and reversing 
symmetries of a dynamical system. However, one may recognize certain (reversing) 
symmetries. To avoid problems I will distinguish between the reversing symmetry 
group and a reversing symmetry group of a dynamical system. The latter points to a 
subgroup of the reversing symmetry group that contains a t  least one reversing symmetry 
of the dynamical system that is considered. 

"?qxxi!kx 2. The cenkAgatien c!zsses e? B rever-lng symmetry greup centais either 
symmetries or reversing symmetries. 

Proof: We know that: 
(i) The composition of two symmetries or two reversing symmetries produces a 

symmetry. 
.(ii) The composition of a symmetry with a reversing symmetry produces a reversing 

symmetry. 
(iii) If T i s  a (reversing) symmetry, then T-' is too. 

Because of the fact that the conjugation operation requires two compositions 

T A T. A-' 

T and its image after conjugation by an element of the reversing symmetry group are 
boih (reversing) symmeiries. iience ihe eiemenis in one coiijugaiioii class are eiihei 
symmetries or reversing symmetries. 0 

Propositions 1 and 2 and definition 1 hold for both dynamical systems with continuous 
and discrete time. However, from now on I will focus on dynamical systems with 
discrete time. 

Proposition 3. L is a symmetry of L. 

proof: L 0 L O  L - I  = L. 0 

Corollary 1. L and L-' are symmetries of L and hence elements of its reversing 
symmetry group. 

Proposition 4. L and L-l form a conjugation class of the reversing symmetry group. 

Proof: Conjugation of L by a symmetry M gives L and conjugation by a reversing 
symmetry S results in L-'. This follows directly from the definition of (reversing) 

0 

Proposition 5. Let S be a reversing symmetry of a mapping L of finite order n (i.e. 
S" = I). If n is odd then L is an involution. 

Proof: By application of definition (7) n times we find 

symmetries. Hence L and L-' form a conjugation class. 

S".L.S-"=L'- '" (10) 

(by ?he !mer no!a!ion is meant: L if n is even and L-' if n is odd). For S" = I we 
0 

If L is an involution, its dynamics are trivial: all points are fixed points of order 2. 
From proposition 5 it follows that only when L has no reversing symmetries of odd 

find from (10) that L = L-' if n is odd. 
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order it is possible for its dynamics not to be trivial. Hence we will focus on the case 
that the reversing symmetries (of finite order) are of even order. 

Proposifion 6. If S is a reversing symmetry of order 2n, then S 0 L is a reversing 
symmetry of order 2n  and ( S  0 L)2 = S2. 

Proof: 

(so  L ) ~ =  ( S  (1 L. ~- l ) ( s2 .  L. ~-2)s2= ~ - 1  L. ~ 2 '  ~2 (11) 

Because of (11) it follows directly from the fact that S2" = I that ( S o  L)2" = I. S 0 L 
is a reversing symmetry for it is a composition of a reversing symmetry and a 
symmetry. U 

From this point we can start building a reversing symmetry group. We will consider 
a very simple reversing symmetry group of a weakly reversible mapping, that is always 
present as  a subgroup of its reversing symmetry group. The necessary ingredients are 
a mapping L and a reversing symmetry S. We will require S to be of even order Zk, 
for we do not want L to be an involution. 

We might thus take L and S to be the generators of this group, but it makes more 
sense !e cse pmpositian 6 that states that there Is z!ways e second reversing s y m ~ ~ e t r y  
of order 2k, T =  S 0 L. From proposition 6 we immediately find that S' = T2.  We can 
construct the mapping from S and T 

L=S-' .T.  (12) 

We will now consider the reversing symmetry group that is generated by S and T. If 
L i s  of order m (i.e. Lm = I ) ,  the group generated by S and T is isomorphic to R z . t  

Defnifion 2. The group R Z  is generated by a and b and defined by the following 
relations: 
(i) 
(ii) a 2 =  b2; 
(iii) (a- lb)" =e. 

However, if L = S-lo T is of finite order m, its dynamics are not interesting for all 
points are fixed points of order m. We will call a weakly reversible mapping non-trivial 
if L" # I for any non-zero integer m. A more interesting group is hence: 

Definifion 3. The group R,* is generated by two elements a and b and defined by the 
following relations: 
(i) a2* = e; 
(ii) a'= b2. 
We may regard R2, as R?*. 

Proposition 7. Let L be a non-trivial weakly reversible mapping that has a reversing 
symmetry of finite order. Then L is an element of a subgroup of its reversing symmetry 

a2*= e ( e  is the unity element of the group); 

nrn..n +I..+ :- :Lr\mnmh;r h R. .  lfnr r n m ~  inteopr k ) ,  6'"yp la",LL".y...v ." ..Lx ,.". I"...- ...I "-". 

t The group generated by Sand Land defined by the relations S 0 L 0 S-' = L-' and Lm = I is also isomorphic 
to RTk. The group homomorphism is surjective since any element of R;1 can be written in terms of S and 
Land injective since the kemel of the homomorphism is I. 
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Proof: The reversing symmetry of finite order is of even order 2k, because L is non-trivial 
and hence not an involution (proposition 5 ) .  The subgroup of the reversing symmetry 
group that is generated by a non-trivial L and a reversing symmetry of order 2 k  is 
isomorphic to R,,. U 

Proposifion 8. R,! is isomorphic to a subgroup of R,, where 2' is the largest power of 
2 that is a divisor of 2 k  2' can be found, writing 2 k  uniquely as a product of primes: 

(13)  2k =2 '  x 3 " x  5 ' " ~ .  . . 

Moreover,t 

R,, = H x Z,J = R,t x C[ , , , ,~ )  (14) 

where a and b are the generators of R,,, H =(a(2k12' ) ,  b '2k /2 i ' ) ,  Z,, = (a"") and C(2k/21) 
is the cyclic group of order 2 k / 2 ' .  

Proof: 
(i) 2' is a divisor of 2 k  and 2 k l 2 '  is odd (a product of odd primes). 
(ii) a 2  commutes with every element of R,,. Z, is a normal subgroup because of this, 

and hence Z2' also. 

Z,J and an element of H. In fact c E R,,, h E H, z E Zit can be written without loss 
of generality as c = a2"s,, h = a2m(2k/2 ' )  s, and z = a', (where n, m, p ,  q and r are 
non-negative integers such that 2 n  < 2k, r < 2 k / 2 '  and 2 m  < 2: and s, (and s4 
respectively) is an alternating sequence of a and b of length p (and q respectively)). 
If e = hz it follows directly that sp = sq and 

I : : : !  A..., ala.......+ "C D ,.".. Ln rlnmm..".~A ....:"..nl.. q c  .1 "f On nlpm*nt nf 
\ , I , ,  ' L ' L J  Z L L . l l l L l l L  "1 .,I, bP,, vc "~C"" '~" '""  'Ay '. y.YVY'L ..&* 

[ 2 m ( 2 k / 2 ' ) + r 2 ' ]  m o d 2 k = 2 n .  

From the latter expression it can easily be checked that m and r are uniquely 
determined by n. 

Since all elements of Z,, commute with all elements of H, H is a normal 
subgroup of R,, too. hence R, ,=  H X Z , ~ .  

(iv) Z2i= C(2ki21), this follows directly from the fact that a is of order 2k.  
(v) H = R,',  it is easy to check that the generators of H: a'2k12') and b'2*is:' satisfy 

0 

Corollary 2. A non-trivial mapping L that has a reversing symmetry of finite order has 
a reversing symmetry group with a subgroup isomorphic to R2d that contains L as an 
element. 

As an illustration of proposition 8 and corollary 2, an explicit example of a mapping 
with a reversing symmetry of order 2k # 2' is presented in appendix A. 

Proposition 9. R2' has no subgroup isomorphic to R,,, where 2 m  <2'. 

Rooj  R,! is generated by a and b, and eacn eiement of 1?,1 can be wriiien as 

the defining relations of R 2 ~ .  

(a2)kS, 

t x i s  a direct product and (q,. . . , an) denotes a group generated by a , ,  . . . , an. 
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where sp is an alternating sequence of a and b of length p, and k some integer. If 
there exists a subgroup of R21 that is isomorphic to R2,,, then it has a generator 

2 k  c = ( a  ) sp 

and 

a2)2k(a2)p if p is odd 
c = { i a 2 ) 2 k s 2 p  

C 2 m  - - e. 

if p is even. 

For c to be a generator of R,, we must have 

Hence p has to be odd and 

(2k+p)m=2 '  

so m must be even. 
We can write any integer as a product of primes 

2k + p  = 2 " ~  x 3"' x . . . odd e n, = 0 

m = 2 9 1 ~ 3 9 z x . . . e v e n  e q , # O  

and 
( 2 k f p ) m  = 2qh x ~ ~ z + " ~ x . .  .#2'  

unless q ,  = /, ni = 0 for all i, and e = 0 for all j # 1. U 

If a mapping L has a reversing symmetry S of infinite order then T =  S 0 L is also a 
reversing symmetry of infinite order and still T L =  S2 .  

Dejnirion 4. The group R ,  is generated by two elements of infinite order a and b 
and defined by the relation: 

(i) a 2 =  b2. 

A group-theoretical discussion on the identification of the groups R;IX, RZk and R, in 
definitions 2 ,  3, and 4 is presented in appendix B. 

Proposition 10. A non-trivial mapping L that has a reversing symmetry of infinite order 
has a reversing symmetry group that has a subgroup isomorphic to R,. 

Proof: The subgroup is generated by L and its reversing symmetry of infinite 
order. 0 

Theorem 1.  All non-trivial weakly reversible mappings L, i.e. mappings that are not 
of finite order and have a reversing symmetry S such that 

(15) 

have a reversing symmetry group that has a subgroup isomorphic to R21 (limit l + m  
included). 

s 0 L o s - '  = L-1 

Proof: Corollary 2 and proposition 10. 0 

Theorem 2. Every non-trivial weakly reversible mapping L is decomposable into two 
mappings of order 2' (limit l + m  included), i.e. L= KO. K,, such that K i a  K:= I. 
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l'roooof: L is the element of a group isomorphic to R2' (theorem 1) and hence can be 
written as L = S - ' a  T where S and T are of order 2' (limit l + m  included). S-' is of 
the same order as S. Identifying KO as S-' and K ,  as T we find from S 2 =  T2  that 
K ; O  K:= I. U 

A weakly reversible mapping is decomposable in the sense of theorem 2. However, 
this decomposition does not have to be unique. A weakly reversible mapping may for 
instance be decomposable into two involutions as well as in two elements of order 
four (such that K i o  K : = I ) .  These decompositions are totally independent. Each 
decomposition into mappings KO and K ,  of the same order 2' such that IC; ., K :  = I 
is irreducible, e.g. a fourfold reversing symmetry never implies reversibility. Several 
types of (weak) reversibility can coexist. This suggests a characterization of (weakly) 
reversible mappings by their irreducible decompositions. 

in  general, reversing symmetry groups wiii be isomorphic to extensions o i  17,). For 
instance, if there is, in addition to  a reversing symmetry S of order 2'. a second reversing 
symmetry U that is independentt of S. In the special case that U commutes with S, 
the reversing symmetry group generated by S, T =  S .  L and U is isomorphic to 
R 2 i x ( U ) .  A reversing symmetry group generated by S, T and U has a subgroup 
generated by U and L that is reducible to R , I ,  for some integer I' (limit l ' +  m included). 
I ,,ray cquar 1, VUL ,I  uucs l l U L  L L a V c :  L U .  LllCj5G r r r u G p , c r l u s r l r  ,="G,>,,,g 3yllllllELIICiS @"c: 
rise to independent decompositions in the sense of theorem 2. 

,I I 1 L... :I A-.. _.. 1_ .^ _L ... :-A ---- A-... ... -:..- 

4. Applications 

(i) It has been shown for reversible mappings that one can use the reversibility to 
find periodic orbits [6 ] .  The search for symmetric periodic orbits using the symmetry 
lines can be easily extended to the weakly reversible case. This idea is worked out in 
more detail in appendix C. 

(ii) For the construction of weakly reversible mappings of a certain kind we can 
make use of a method already exploited for reversible mappings [ 5 ] .  One may construct 
a weak!y reversible mapping with a 2'-fo!d reversing symmetry from one element A 
oforder2' (e.g. a rotation overZrj2 ' )  and a transformation T. From A we can construct 
B = T ., A 0 T-' that is automatically of the same order as A. The requirement that 
A'= 8' restricts T to transformations that commute with A'. Constructing non-trivial 
reversible mappings, there is n o  restriction on T because it always commutes with 
A'= I. Using this method one is able to produce non-trivial weakly reversible mappings 
of various kinds. In appendix D this method is used to construct a family of weakly 
reversible mappings with a fourfold reversing symmetry. 

5. Concluding remarks 

Dynamical systems with a reversing symmetry and discrete time, (weakly) reversible 
mappings, are shown to have a special structure. They are always decomposable into 
two mappings of order 2' (limit 1 + m included) such that the squares of these mappings 

t If S is a reversing symmetry, it lallows directly that S"+' e L" (for any integer k and n) is a reversing 
symmetry too. These reversing symmetries are regarded as dependent. 
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are each other's inverse (theorem 2). This property has been shown to be understood 
entirely from a group-theoretical point of view. 

As do symmetry groups, reversing symmetry groups provide much information 
about the dynamics. I have shown that certain periodic orbits are directly related to 
the reversing symmetries (see appendix C). A more profound study of reversing 
symmetry groups, i.e. extensions of R,J,  may lead to a better insight into the structure 
of the dynamics. As has been recognized by MacKay [7], symmetries may give rise to 
anomalous behaviours of the dynamics. Since weakly reversible mappings inherently 
possess symmetries, this notion is very relevant in further studies of the dynamics of 
weakly reversible mappings. 

To study the explicit difference between reversible and weakly reversible mappings 
that are not reversible the family of mappings that is presented in appendix D may 
serve to provide an example. Using the concept of local reversibility [8,9] one may 
CVUDL~UCL a I I V L L - L L L V W  wcanly ~ C V C L ~ W K  r~mpplrlg inat IS ueiiniteiy nut rcversimc. w e  
plan to study such mappings in the near future. 

In microscopic crystal models such as the discrete frustrated Q4 (DIFFOUR) model 
[IO, 111, reversing symmetries in a mapping that is related to the search for ground 
states may occur as a direct consequence of symmetries in the local potential. Phase 
transitions can be related to bifurcations of this mapping. The connection between 
possible kinds of phase transitions and the reversing symmetries is obvious, e.g. 
para-ferro phase transitions in the DIFFOUR model are related to symmetry breaking 
(Rimmer) bifurcations. We plan to study explicit examples in the near future. 

--.."&...."* - ^^^ .-:..:-a - , . I . .  :La^ I.-- :-- .L.. :. >.c-:..*.. -.I ..~...-:L.. *.?. 
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Appendix A. Modified Townsville mappings 

As an example I will present in this appendix a family of modified Townsville mappings 
(for the original Townsville mapping see Post et a f  [ 5 ] ) .  These mappings have a 
reversing symmetry group isomorphic to Rln+2. They are decomposable into two 
elements of order (4n +2)  and so are additionally decomposable into two involutions 
in the spirit of theorem 2. 

To find a non-trivial example of a reversible mapping with a reversing symmetry 
element of order (4n t 2), we may construct it from two mappings A and B with the 
following properties: 
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Condition (A.4) ensures that our reversible mapping L =  B 0 A2"+' IS ' not an involution. 
This to prevent trivial dynamics. I will now present a modification of the Townsville 
mapping that has the proposed symmetries. A and B are given by 

It is furthermore required that w(y)= - w ( - y ) , g ( x + l / ( 2 n + l ) ) = g ( x )  and 
h (x+ l / (2n+ l ) )=h(x ) .  B 2 = I  [5] and we have 

A2: { x ' = x +  1/(2n + 1) ,(mod 1) 

Y ' = Y  
(mod 1) 

y' = -y. 

Hence it is immediately clear that (A.3) is satisfied and that for almost all o (y)  (A.4) 
is satisfied; The resulting modified Townsville mapping L = B 0 A2"+' has the following 
form: 

(A.9) 
xi  = x +i+ ~ ( y  j 
y' = (Y + d x ' ) ) / ( l -  yh(x')) 

(mod i)  L: { 
with g (x+ l / (2n+ l ) )  =g(x),  h (x+  1/(2n+ 1)) = h(x) and o(-y) = - w ( y ) .  

L is decomposable into two involutions 
L= I,. I, (A.lO) 

where 
I , = B  (A.ll)  

and 
I 1 -  -A2"+l (A.12) 

as we!! as in two mappinss of order 4n +2  

L=K, ,nK,  

where 

and y '= ( -y+dx) ) / ( l  +yh(x)) 
x'= x+n/(2n + 1) (mod 1) 

(A.13) 

(A.14) 

K ,  = A. (A.15) 

It is straightforward to check that K i o  K : =  I and K r + 2 = I .  

Aopeodix B. Identification of Rrk: RTk and R,  

In this appendix I present a more detailed discussion on the identification of the groups 
that have been defined in this paper. As a standard reference I use the book of Coxeter 
and Moser [12]. 
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The group RTk that is defined in definition 2 can be identified as one of the families 

(1, mln; 9) (B.1) 

of groups known as Miller's generalization of polyhedral groups ([I21 section 6.6): 

generated by R, S and Z and defined by ( [ 1 2 ]  equation (6.62)) 

R ' =  S" = (RS)"  = Z' = E (B.2) 

where E is the unity element of the group. Comparing this with definition 2 we find 
immediately that 

RYk=(-2,21m; k )  (B.3) 

I 1  

and from definitions 3 and 4 that 

R,k=RE=(-2,2100; k )  (B.4) 

R,= R 2 = ( - 2 , 2 1 ~ ; 0 0 ) .  (B.5) 

For (1, m l n ;  q )  it has already been recognized (1121 equation (6.624)) that 

( I , m l n ; q ) = ( I , m l n ; 2 ' ) x C ,  (B.6) 

where q = 2'r, r is odd and C, is the cyclic group of order r. As a corollary of this, 
proposition 8 and (14) follow immediately. 

Instead of building RYk from a and b we may also generate it from a and A = a - ' b  
(with a of order 2k, A of order m and aha-' =A-'). It  is easily checked that this is 
entirely equivalent. Looking at RYk from this point of view its structure can be 
recognized as a cyclic expansion of a cyclic group. 

( A ) =  C,  (B.7) 

( a ) =  CZk (B.8) 

and 

RYk - ( A )  A (0) (B.9) 

where A is a semidirect product and (A)  a normal subgroup of RYk. Hence we find that 

R 2 - C "  A C 2 k ' ( C m h C 2 ' ) X C ~ Z k / 1 ' )  (B.lO) 

Z ,  = (aZ) is a normal subgroup of RTk (the elements of Z ,  commute with all elements 

(B.11) 

D, is the dihedral group ([I21 equation (1 .52)) .  The dihedral group typically acts as 
a reversing symmetry group for reversible mappings: D, for trivial and D,  for 
non-trivial reversible mappings. 

where the last isomorphism follows from (B.6). 

of RTk) and we find that 

RTk/Z,  = (aZ, ,  bZ,) = RT= D,  . 

~ - r r ~  Aooendiw C, Symmetric periodic orbits 

For reversible mappings it has been recognized that some periodic orbits follow directly 
from the symmetry properties of the mapping. These periodic orbits are called symmetric 
periodicorbits. However, this idea can be easily extended to weakly reversible mappings. 
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The following is a straightforward generalization of the work of DeVogelaere [6 ]  who 
considered explicitly reversible mappings. 

Define the family of sets: 

B,, := { X E  %: L" 0 Kax = x} (C.1) 

where KO is a reversing symmetry of L that is an automorphism on the configuration 
space %. We find that 

x E 92" n 92, + L"-"x = x. (C.2)  

Proof: Note that 

L " o K , x = x  e K , o L - " x = x  x = L " ~ K ; ' x  (C.3) 

L"-"x = L" 0 KO (I Lm o K; 'x  = L" o KooLm (I K,x = x, (C.4) 

and we find that for any x E 92" n 3, 

We will call these periodic orbits symmetric periodic orbits. 
All Bn can be found from sa and 92,: 

B2. = L"B0 922"+1 = L"92,. (C.5) 

proof: 

x ~ . % 2 n  C, x =  L~~~ K + =  L" a K , O  L-% 

X~ %2n+l e x = L~"+' K ~ X  = L" 0 L~ K~ L-"X 

e KO 0 L-"x = L-"x =+ L-"x E Bo 

e L ~ K , ~ L - " x = L - " x  =+ L - " X E % ,  

For practical use one should note that every orbit that intersects 92" n Ye, also intersects 
920 if n is even, and if n is odd. Hence it is sufficient to search for symmetric 
periodic orbits at 

(C.2) and (C.5) have already been found by DeVogelaere [6] for reversible mappings. 
(Note that in general not all periodic orbits can be found in this way. Asymmetric 
periodic orbits may exist as well.) 

Appendix D. ZD mappings with a fourfold reversing symmetry 

In this appendix a family of ZD mappings is constructed with a reversing symmetry of 
order 4. We start with a mapping of order 4 (the rotation over ? r / 2 ) :  

- y  
y ' = x  

A:  ( 
and a transformation 7 
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A second mapping of order 4 is constructed from A and T : B = T 0 A 0 T-I. A and B 
can serve as generators of the subgroup of the reversing symmetry group isomorphic 
to R4 of L =  A-‘ 0 B if A’= 8’. The latter implies that ToAZ=A2=-T and hence that p 
is an even function and q and r are odd functions. 

0 3 )  
x ’ = ( r ( x )  - Y ) p ( y ’ - r ( x ’ ) ) +  q ( y ’ - r ( x ’ ) )  
Y ’ = ( x - q ( y - r ( x ) ) ) / ( p ( y - * ( x ) ) ) + r ( x ‘ )  

x’= ( x - d y - r b ) ) ) I ( p ( y -  r ( X ) ) ) - r ( y ’ )  
~ ’ = - ( r ( x ) - y ) p ( x ’ + r ( y ’ ) ) - q ( x ’ + r ( y ’ ) ) .  

E :  [ 

L: [ 
and L = A-laB 

(D.4) 

L is weakly reversible with A as a reversing symmetry of order 4 if p is an even function 
and q and r are odd functions. 
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